收藏本站   
欢迎来到答案网! 请  登录  |  注册 
   
答案网
  
 
 首页 | 语文答案 | 数学答案 | 英语答案 | 物理答案 | 化学答案 | 历史答案 | 政治答案 | 生物答案 | 地理答案 | 课后答案 | 日记大全 | 作文大全 | 句子大全 | 美文阅读
 练习册答案 | 暑假作业答案 | 寒假作业答案 | 阅读答案 | 学习方法 | 知识点总结 | 哲理小故事 | 祝福语大全 | 读后感 | 名人语录 | 题记大全 | 造句大全 | 心情不好的说说
提问 

单选题用两种正多边形镶嵌,不能与正三角形匹配的正多边形是A.正方形B.正六边形C.正十


时间: 2015-4-30 分类: 作业习题  【来自ip: 16.16.110.96 的 热心网友 咨询】 手机版
 问题补充 单选题 用两种正多边形镶嵌,不能与正三角形匹配的正多边形是A.正方形B.正六边形C.正十二边形D.正十八边形
  网友答案:
热心网友
热心网友
1楼
D解析分析:由镶嵌的条件知,在一个顶点处各个内角和为360°.解答:A、正三角形的每个内角是60°,正方形的每个内角是90°.∵3×60°+2×90°=360°,∴正方形能匹配;B、正六边形的每个内角是120°,正三角形的每个内角是60度.∵2×120°+2×60°=360°,或120°+4×60°=360°,∴正六边形能匹配;C、正三角形的每个内角是60°,正十二边形的每个内角是180°-360°÷12=150°,∵60°+2×150°=360°,∴正十二边形能匹配;D、正三角形的每个内角是60°,正十八边形内角为160°,显然不能构成360°的周角,故不能匹配.故选D.点评:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
  相关问题列表
 学习方法推荐
 课本知识点总结
 作文推荐
 答案大全
 推荐问题
 热门回答
 文库大全
答案网   www.Zqnf.com