收藏本站   
欢迎来到答案网! 请  登录  |  注册 
   
答案网
  
 
 首页 | 语文答案 | 数学答案 | 英语答案 | 物理答案 | 化学答案 | 历史答案 | 政治答案 | 生物答案 | 地理答案 | 课后答案 | 日记大全 | 作文大全 | 句子大全 | 美文阅读
 练习册答案 | 暑假作业答案 | 寒假作业答案 | 阅读答案 | 学习方法 | 知识点总结 | 哲理小故事 | 祝福语大全 | 读后感 | 名人语录 | 题记大全 | 造句大全 | 心情不好的说说
提问 

解答题已知函数f(x)=log2|x+1|.(1)求函数y=f(x)的定义域和值域;(


时间: 2015-4-22 分类: 作业习题  【来自ip: 17.182.166.39 的 热心网友 咨询】 手机版
 问题补充 解答题 已知函数f(x)=log2|x+1|.
(1)求函数y=f(x)的定义域和值域;
(2)指出函数y=f(x)的单调区间.

  网友答案:
热心网友
热心网友
1楼
解:(1)由题意知,函数f(x)=log2|x+1|,
由|x+1|>0解得,x<-1或x>1,
则函数f(x)定义域:(-∞,-1)∪(-1,+∞),
由|x+1|>0,则函数f(x)值域:(-∞,+∞).
(2)当x<-1时,函数y=|x+1|=-x-1,并且在(-∞,-1)是减函数,
∵函数y=log2x在定义域上是增函数,
∴原函数y=f(x)在(-∞,-1)是减函数,
当x>-1时,函数y=|x+1|=x+1,并且在(-1,+∞)是增函数,
∵函数y=log2x在定义域上是增函数,
∴原函数y=f(x)在(-1,+∞)是增函数,
综上,函数y=f(x)的单调减区间(-∞,-1);单调增区间(-1,+∞).解析分析:(1)由|x+1|>0求得函数的定义域,再根据真数|x+1|>0和对数函数的性质求出函数的值域;(2)分x<-1和x>-1两种情况,化简真数对应的函数y=|x+1|,并判断在区间上单调性,由底数是2的对数函数的单调性和“同增异减”法则,求出原函数的单调性及单调区间.点评:本题考查了对数型复合函数的性质,利用真数大于零求出函数的定义域和值域,再根据绝对值中式子的符号进行分类求解,利用“同增异减”法则求原函数的单调区间,考查了分析问题和解决问题的能力.
  相关问题列表
 学习方法推荐
 课本知识点总结
 作文推荐
 答案大全
 推荐问题
 热门回答
 文库大全
答案网   www.Zqnf.com