解:命题p:|f(x)|<2,

(2分)
命题q:设x2+(a+2)x+1=0判别式为△
当△<0时,A=?,此时△=(a+2)2-4<0,-4<a<0
当△≥0时,由A∩B=?得

∴a>-4????(6分)
(1)若p真q假

(2)若p假q真

∴实数a的取值范围为(-5-4]∪[7,+∞)(12分)解析分析:先求得命题p中草药范围,再对x2+(a+2)x+1=0判别式△分类讨论,分△<和△≥0,使A∩B=?,,求出a的范围;然后利用复合命题的真值表,根据“有且仅有一个真”分两类求出a的范围.点评:本题考查二次不等式恒成立求参数范围、二次不等式的解法、分类讨论的数学思想方法.解答关键是复合命题的真假判断表.