收藏本站   
欢迎来到答案网! 请  登录  |  注册 
   
答案网
  
 
 首页 | 语文答案 | 数学答案 | 英语答案 | 物理答案 | 化学答案 | 历史答案 | 政治答案 | 生物答案 | 地理答案 | 课后答案 | 日记大全 | 作文大全 | 句子大全 | 美文阅读
 练习册答案 | 暑假作业答案 | 寒假作业答案 | 阅读答案 | 学习方法 | 知识点总结 | 哲理小故事 | 祝福语大全 | 读后感 | 名人语录 | 题记大全 | 造句大全 | 心情不好的说说
提问 

解答题已知a∈R,函数f(x)=xln(-x)+(a-1)x.(Ⅰ)若f(x)在x=-


时间: 2015-4-17 分类: 作业习题  【来自ip: 18.178.176.225 的 热心网友 咨询】 手机版
 问题补充 解答题 已知a∈R,函数f(x)=xln(-x)+(a-1)x.
(Ⅰ)若f(x)在x=-e处取得极值,求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间[-e2,-e-1]上的最大值g(a).

  网友答案:
热心网友
热心网友
1楼
解:(Ⅰ)f'(x)=ln(-x)+a,(2分)
由题意知x=-e时,f'(x)=0,即:f'(-e)=1+a=0,
∴a=-1(3分)
∴f(x)=xln(-x)-2x,f'(x)=ln(-x)-1
令f'(x)=ln(-x)-1=0,可得x=-e
令f'(x)=ln(-x)-1>0,可得x<-e
令f'(x)=ln(-x)-1<0,可得-e<x<0
∴f(x)在(-∞,-e)上是增函数,在(-e,0)上是减函数,(6分)
(Ⅱ)f'(x)=ln(-x)+a,
∵x∈[-e2,-e-1],
∴-x∈[e-1,e2],
∴ln(-x)∈[-1,2],(7分)
①若a≥1,则f'(x)=ln(-x)+a≥0恒成立,此时f(x)在[-e2,-e-1]上是增函数,
fmax(x)=f(-e-1)=(2-a)e-1(9分)
②若a≤-2,则f'(x)=ln(-x)+a≤0恒成立,此时f(x)在[-e2,-e-1]上是减函数,
fmax(x)=f(-e2)=-(a+1)e2(11分)
③若-2<a<1,则令f'(x)=ln(-x)+a=0可得x=-e-a
∵f'(x)=ln(-x)+a是减函数,
∴当x<-e-a时f'(x)>0,当x>-e-a时f'(x)<0
∴f(x)在(-∞,-e)[-e2,-e-1]上左增右减,
∴fmax(x)=f(-e-a)=e-a,(13分)
综上:数学公式(14分)解析分析:(I)先对函数y=f(x)进行求导,然后令导函数大于0(或小于0)求出x的范围,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,即可得到
  相关问题列表
 学习方法推荐
 课本知识点总结
 作文推荐
 答案大全
 推荐问题
 热门回答
 文库大全
答案网   www.Zqnf.com