收藏本站   
欢迎来到答案网! 请  登录  |  注册 
   
答案网
  
 
 首页 | 语文答案 | 数学答案 | 英语答案 | 物理答案 | 化学答案 | 历史答案 | 政治答案 | 生物答案 | 地理答案 | 课后答案 | 日记大全 | 作文大全 | 句子大全 | 美文阅读
 练习册答案 | 暑假作业答案 | 寒假作业答案 | 阅读答案 | 学习方法 | 知识点总结 | 哲理小故事 | 祝福语大全 | 读后感 | 名人语录 | 题记大全 | 造句大全 | 心情不好的说说
提问 

填空题已知l,m是两条不同的直线,α,β是两个不同的平面.下列命题:①若l?α,m?α


时间: 2015-4-15 分类: 作业习题  【来自ip: 19.150.112.69 的 热心网友 咨询】 手机版
 问题补充 填空题 已知l,m是两条不同的直线,α,β是两个不同的平面.下列命题:
①若l?α,m?α,l∥β,m∥β,则α∥β;??②若l?α,l∥β,α∩β=m,则l∥m;
③若α∥β,l∥α,则l∥β;????④若l⊥α,m∥l,α∥β,则m⊥β.
其中真命题是________(写出所有真命题的序号).

  网友答案:
热心网友
热心网友
1楼
②④解析分析:①考查面面平行的判定定理,看条件是否都有即可判断出真假;②考查线面平行的性质定理,看条件是否都有即可判断出真假;③可以采用举反例的方法说明其为假命题;④先由两平行线中的一条和已知平面垂直,另一条也和平面垂直推得m⊥α,再由两平行平面中的一个和已知直线垂直,另一个也和直线垂直推得m⊥β.即为真命题.解答:对于①,没有限制是两条相交直线,故①为假命题;对于②,利用线面平行的性质定理可得其为真命题;对于③,l也可以在平面β内,故其为假命题;对于④,由l⊥α,m∥l可得m⊥α,再由α∥β可得m⊥β,即④为真命题.故真命题有 ②④.故
  相关问题列表
 学习方法推荐
 课本知识点总结
 作文推荐
 答案大全
 推荐问题
 热门回答
 文库大全
答案网   www.Zqnf.com