解:(I)在△ABC中,由正弦定理得

.
由sin(B+C)=2sinB及B+C=π-A得sinA=2sinB.
∴

.
(II)在△ABC中,由余弦定理得

.
∴

.
∴

.解析分析:(I)在三角形中,应用正弦定理写出关系式,根据sin(B+C)=2sinB及B+C=π-A得sinA=2sinB,表示出a得到结果.(II)根据余弦定理做出角B的余弦值,是一个正数,得到这个角是一个锐角,根据两个角之间的关系求出正弦值,再把要求的式子用两角之和的余弦公式展开,得到结果.点评:本题考查解三角形的问题和三角函数的恒等变形,是一个基础题,解题的关键是正弦定理和余弦定理的综合应用,注意角的范围的分析.