24解析分析:由题意得acosA=bcosB,结合正弦定理化简得sin2A=sin2B,所以2A=2B或2A+2B=180°.由于a、b不相等,得A≠B,因此A+B=90°,可得△ABC是直角三角形.根据c=10和

,利用勾股定理算出b=6且a=8,即可得到△ABC的面积.解答:∵

,∴acosA=bcosB,结合正弦定理得sinAcosA=sinBcosB∴2sinAcosA=2sinBcosB,即sin2A=sin2B∵A、B是三角形的内角∴2A=2B或2A+2B=180°,可得A=B或A+B=90°∵

,得a、b的长度不相等∴A=B不成立,只有A+B=90°,可得C=180°-(A+B)=90°因此,△ABC是直角三角形设b=3x,a=4x,可得c=

=5x=10∴x=2,于是b=6且a=8,由此可得△ABC的面积是S=

ab=

×8×6=24故