收藏本站   
欢迎来到答案网! 请  登录  |  注册 
   
答案网
  
 
 首页 | 语文答案 | 数学答案 | 英语答案 | 物理答案 | 化学答案 | 历史答案 | 政治答案 | 生物答案 | 地理答案 | 课后答案 | 日记大全 | 作文大全 | 句子大全 | 美文阅读
 练习册答案 | 暑假作业答案 | 寒假作业答案 | 阅读答案 | 学习方法 | 知识点总结 | 哲理小故事 | 祝福语大全 | 读后感 | 名人语录 | 题记大全 | 造句大全 | 心情不好的说说
提问 

(探索题)如图所示,若AB∥CD,在下列四种情况下探索∠APC与∠PAB,∠PCD三者之间的关系,并选择图(3)进行说明.


时间: 2016-7-13 分类: 作业习题  【来自ip: 18.152.128.35 的 热心网友 咨询】 手机版
 问题补充 (探索题)如图所示,若AB∥CD,在下列四种情况下探索∠APC与∠PAB,∠PCD三者之间的关系,并选择图(3)进行说明.

  网友答案:
热心网友
热心网友
1楼
解:(1)∠APC+∠PAB+∠PCD=360°;
(2)∠APC=∠PAB+∠PCD;
(3)∠APC=∠PCD-∠PAB;
(4)∠APC=∠PAB-∠PCD;
选(3)说明,设PC交AB于K,则∠PKB=∠PCD,
∵∠PKB=∠APC+∠PAB,
∴∠APC+∠PAB=∠PCD,
即∠APC=∠PCD-∠PAB.

解析分析:图(1)过点P作平行线平行于AB,利用两直线平行,同旁内角互补,得出∠APE+∠PAB=180°,∠EPC+∠PCD=180°.即可得∠APC+∠PAB+∠PCD=360°;
图(2)过点P作平行线平行于AB,利用两直线平行,内错角相等,得出∠APE=∠PAB,∠EPC=∠PCD.即可得∠APC=∠PAB+∠PCD;
图(3)说明,设PC交AB于K,利用两直线平行,同位角相等.即可得∠PKB=∠PCD,而∠PKB=∠APC+∠PAB
所以∠APC+∠PAB=∠PCD
即∠APC=∠PCD-∠PAB.
图四和图三同理.

点评:解题规律:过P作PE∥AB或PE∥CD,运用平行线性质加以探索即可.
  相关问题列表
 学习方法推荐
 课本知识点总结
 作文推荐
 答案大全
 推荐问题
 热门回答
 文库大全
答案网   www.Zqnf.com