收藏本站   
欢迎来到答案网! 请  登录  |  注册 
   
答案网
  
 
 首页 | 语文答案 | 数学答案 | 英语答案 | 物理答案 | 化学答案 | 历史答案 | 政治答案 | 生物答案 | 地理答案 | 课后答案 | 日记大全 | 作文大全 | 句子大全 | 美文阅读
 练习册答案 | 暑假作业答案 | 寒假作业答案 | 阅读答案 | 学习方法 | 知识点总结 | 哲理小故事 | 祝福语大全 | 读后感 | 名人语录 | 题记大全 | 造句大全 | 心情不好的说说
提问 

单选题若数列{an}的前n项和为Sn=n2,则A.an=2n-1B.an=2n+1C.


时间: 2015-5-14 分类: 作业习题  【来自ip: 14.178.14.61 的 热心网友 咨询】 手机版
 问题补充 单选题 若数列{an}的前n项和为Sn=n2,则A.an=2n-1B.an=2n+1C.an=-2n-1D.an=-2n+1
  网友答案:
热心网友
热心网友
1楼
A解析分析:根据数列{an}的前n项和Sn,表示出数列{an}的前n-1项和Sn-1,两式相减即可求出此数列的通项公式,然后把n=1代入也满足,故此数列为等差数列,求出的an即为通项公式,解答:当n=1时,S1=12=1,当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,又n=1时,a1=2-1=1,满足通项公式,∴此数列为等差数列,其通项公式为an=2n-1,故选A.点评:此题考查了等差数列的通项公式,灵活运用an=Sn-Sn-1求出数列的通项公式是解本题的关键.
  相关问题列表
 学习方法推荐
 课本知识点总结
 作文推荐
 答案大全
 推荐问题
 热门回答
 文库大全
答案网   www.Zqnf.com