收藏本站   
欢迎来到答案网! 请  登录  |  注册 
   
答案网
  
 
 首页 | 语文答案 | 数学答案 | 英语答案 | 物理答案 | 化学答案 | 历史答案 | 政治答案 | 生物答案 | 地理答案 | 课后答案 | 日记大全 | 作文大全 | 句子大全 | 美文阅读
 练习册答案 | 暑假作业答案 | 寒假作业答案 | 阅读答案 | 学习方法 | 知识点总结 | 哲理小故事 | 祝福语大全 | 读后感 | 名人语录 | 题记大全 | 造句大全 | 心情不好的说说
提问 

单选题用下列两种正多边形能拼地板的是A.正三角形和正八边形B.正方形和正八边形C.正六


时间: 2015-5-3 分类: 作业习题  【来自ip: 13.12.151.68 的 热心网友 咨询】 手机版
 问题补充 单选题 用下列两种正多边形能拼地板的是A.正三角形和正八边形B.正方形和正八边形C.正六边形和正八边形D.正十边形和正八边形
  网友答案:
热心网友
热心网友
1楼
B解析试题考查知识点:这是镶嵌问题思路分析:假设用两种可以进行镶嵌,则密铺成的图形在拼接点处所有的角之和应是360 具体解答过程:不难推算:正三角形的一个内角为60°;正方形的一个内角为90°;正八边形的一个内角为180°-=135°;正十边形的一个内角为180°-=144°A、若边长相等的正三角形和正八边形进行镶嵌,假设用m个正三角形和n个正八边形(m、n均为正整数),则60m+135n=360,即4m+9n=24,显然此方程无正整数解;故正三角形和正八边形不能拼地板(镶嵌);B、若边长相等的正方形和正八边形进行镶嵌,假设用m个正方形和n个正八边形(m、n均为正整数),则90m+135n=360,即6m+9n=24,可以看出m=1,n=2;这就是说1个正方形可以和2个正八边形拼地板(镶嵌);C、若边长相等的正六边形和正八边形进行镶嵌,假设用m个正六边形和n个正八边形(m、n均为正整数),则120m+135n=360,即8m+9n=24,显然此方程无正整数解;故正六边形和正八边形不能拼地板(镶嵌);D、若边长相等正十边形和正八边形进行镶嵌,假设用m个正十边形和n个正八边形(m、n均为正整数),则144m+135n=360,即16m+15n=40,显然此方程无正整数解;故正十边形和正八边形不能拼地板(镶嵌);综上所述,只有正方形和正八边形可以拼地板(镶嵌)。故选B试题点评:抓住问题的关键,是解决问题的不二法门。
  相关问题列表
 学习方法推荐
 课本知识点总结
 作文推荐
 答案大全
 推荐问题
 热门回答
 文库大全
答案网   www.Zqnf.com