您好,欢迎来到答案网! 请  登录  |  免费注册   收藏本站Ctrl+D    
答案网
  

网站首页 | 学习方法首页 | 语文学习方法 | 数学学习方法 | 英语学习方法 | 历史学习方法 | 政治学习方法 | 物理学习方法 | 化学学习方法 | 生物学习方法 | 地理学习方法
 栏目类别:学习方法 >> 高中 >> 数学

排列组合解题技巧

  排列组合作为高中代数课本的一个独立分支,极具抽象性而成为“教”与“学”难点,有相当一部分题目教者很难用比较清晰简洁的语言讲给学生听,有的即使教者觉得讲清楚了,但是由于学生的认知水平、思维能力在一定程度上受到限制,还不太适应这种极具抽象的运算方法。笔者认为之所以学生“怕”学排列组合,主要还是因为排列组合的抽象性,那么解决问题的关键就是将抽象问题具体化,我们不妨将原题进行一下转换,让学生走进题目当中,成为“演员”,成为解决问题的决策者。为此,笔者就教学过程中的三个难点通过特例作进一步的说明:

  一、占位子问题

  例1:将编号为1、2、3、4、5的5个小球放进编号为1、2、3、4、5的5个盒子中,要求只有两个小球与其所在的盒子编号相同,问有多少种不同的方法。

  一是仔细审题。在转换题目之前先让学生仔细审题,从特殊字眼小球和盒子都已“编号”着手,清楚这是一个“排列问题”,然后对题目进行等价转换。

  二是转换题目。在审题的基础上,为了激发学生兴趣,使其进入角色,我将题目转换为:让学号为1、2、3、4、5的学生坐到编号为1、2、3、4、5的五张凳子上(凳子已准备好放在讲台前),要求只有两个学生与其所坐的凳子编号相同,问有多少种不同的坐法。

  三是解决问题。这时我再选另一名学生来安排这5位学生坐位子(学生争着上台,积极性已经得到了极大的提高),班上其他同学也都积极思考(充分发挥了学生的主体地位和主观能动性),努力地“出谋划策”,不到两分钟的时间,同学们有了统一的看法:先选定符合题目特殊条件“两个学生与其所坐的凳子编号相同”的两位同学,有C种方法,让他们坐到与自己编号相同的凳子上,然后剩下的三位同学不坐编号相同的凳子有2种排法,最后根据乘法原理得到结果为2×C=20(种)。这样原题也就得到了解决。

  四是学生小结。接着我让学生之间互相讨论,根据自己的分析方法对这一类问题提出一个好的解决方案(课堂气氛又一次活跃起来)。

  五是老师总结。对于这一类占位子问题,关键是抓住题目中的特殊条件,先从特殊对象或者特殊位子入手,再考虑一般对象,从而最终解决问题。

  二、分组问题

  例2:从1、3、5、7、9和2、4、6、8两组数中分别选出3个和2个数组成五位数,问这样的五位数有几个?

  (本题我是先让学生计算,有很多同学得出的结论是P×P)

  一是仔细审题。先由学生审题,明确组成五位数是一个排列问题,但是由于这五个数来自两个不同的组,因此是一个“分组排列问题”,然后对题目进行等价转换。

  二是转换题目。在学生充分审题后,我让学生自己对题目进行等价转换,同学A将题目转换如下:从班级的第一组(12人)和第二组(10人)中分别选3位和2位同学分别去参加苏州市举办的语文、数学、英语、物理、化学竞赛,问有多少种不同的选法。

  三是解决问题。我让同学A来提出选人的方案,同学A说:“先从第一组的12个人中选出3人参加其中的3科竞赛,有P×P种选法;再从第二组的10人中选出2人参加其中2科竞赛有P×P种选法;最后由乘法原理得出结论为(P×P)×(P×P)(种)。”(这时同学B表示反对)

  同学B说:“如果第一组的3个人先选了3门科目,那么第二组的2人就没有选择的余地。所以第二步应该是P×P。”(同学们都表示同意,但是同学C说太麻烦)

  同学C说:“可以先分别从两组中把5个人选出来,然后将这5个人在5门学科中排列,他列出的计算式是C×C×P(种)。”(再次通过互相讨论,都表示赞赏)

  这样原题的解答结果就“浮现”出来C×C×P(种)。

  四是老师总结。针对这样的“分组排列”题,我们多采用“先选后排”的方法:先将需要排列的对象选定,再对它们进行排列。

  三、多排问题

  把元素排成几排的问题,可看成一排考虑,再分段处理。

  例3:7个人排成前后两排,前排3人,后排4人。

  分析:分两步来完成,先选三人排在前排有,余下的4人放在后排有A44种,所以共有种A33×A44=5040;分析:A77=5040,所以对于分排列等价全排列。

  总之,排列组合解题分析过程,旨在通过这种方法的尝试(教学效果比较明显),进一步活跃课堂气氛,更全面地调动学生的学习积极性,发挥教师的主导作用和学生的主体作用,让学生在互相讨论的过程中学会自己分析,转换问题,解决问题。

 小学数学学习方法与技巧
 初中数学学习方法与技巧
 高中数学学习方法与技巧
CopyRight @ 2007-2016   学习方法 www.zqnf.com    All Rights Reserved